Learning to Accept Higgs Boson at CDF

Sarah Lockwitz, Yale University January 17, 2012

Outline

- Motivation for low mass Higgs
- Electrons at CDF
- Adding and modeling electron triggers
- Electron identification neural network
- Bigger picture
- Higgs search outlook

- The standard model Lagrangian describes massless force carriers
- W & Z bosons are not massless!

- The standard model Lagrangian describes massless force carriers
- W & Z bosons are not massless!

- The standard model Lagrangian describes massless force carriers
- W & Z bosons are not massless!

- The standard model Lagrangian describes massless force carriers
- W & Z bosons are not massless!

 In the 1960s, Brout, Englert, Higgs, Kibble, Guralnik and Hagen devised a method for electroweak symmetry breaking

- In the 1960s, Brout, Englert, Higgs, Kibble, Guralnik and Hagen devised a method for electroweak symmetry breaking
- Method introduced a potential that spontaneously broke the symmetry

- In the 1960s, Brout, Englert, Higgs, Kibble, Guralnik and Hagen devised a method for electroweak symmetry breaking
- Method introduced a potential that spontaneously broke the symmetry
- The consequence of this was a new particle -- the Higgs boson -a physically realizable particle
- However, it does not predict the mass!

- Previous searches ruled out up to 114.4 GeV/c² at the 95% CL (LEP result)
- Precision electroweak data predict a mass around 92⁺³⁴-26 GeV/c²

- Previous searches ruled out up to 114.4 GeV/c² at the 95% CL (LEP result)
- Precision electroweak data predict a mass around 92⁺³⁴-26 GeV/c²
- Hadron Collider Searches
 - TeV
 - LHC
- So we focus in the "light" region 100-150 GeV/c²

m_{Limit} = 161 GeV

- Previous searches ruled out up to 114.4 GeV/c² at the 95% CL (LEP result)
- Precision electroweak data predict a mass around 92⁺³⁴-26 GeV/c²
- Hadron Collider Searches
 - TeV
 - LHC
- So we focus in the "light" region 100-150 GeV/c²
 - Recent results from LHC further motivate between 115-130 GeV/c²

m_{Limit} = 161 GeV

 There are multiple production and decay modes

- There are multiple production and decay modes
- WH & ZH (H to bb) are dominant contributors (≤135 GeV/c²) (H to bb is dominated by background)

- There are multiple production and decay modes
- WH & ZH (H to bb) are dominant contributors (≤135 GeV/c²) (H to bb is dominated by background)

These channels are analyzed individually

("optimized" analyses)

ZH → IIbb

- There are multiple production and decay modes
- WH & ZH (H to bb) are dominant contributors (≤135 GeV/c²) (H to bb is dominated by background)
- These channels are analyzed individually ("optimized" analyses)

- There are multiple production and decay modes
- WH & ZH (H to bb) are dominant contributors (≤135 GeV/c²) (H to bb is dominated by background)
- These channels are analyzed individually ("optimized" analyses)
- Here, I'll discuss some aspects of CDF's
 ZH to eebb search

 We don't expect many events: cutand-count methods would require atto-barnes of data (1000 years)

 We don't expect many events: cutand-count methods would require atto-barnes of data (1000 years)

- We don't expect many events: cutand-count methods would require atto-barnes of data (1000 years)
- Instead, final discriminant is a neuralnetwork output distribution

- We don't expect many events: cutand-count methods would require atto-barnes of data (1000 years)
- Instead, final discriminant is a neuralnetwork output distribution

- We don't expect many events: cutand-count methods would require atto-barnes of data (1000 years)
- Instead, final discriminant is a neuralnetwork output distribution

 Advanced/sophisticated techniques are used to improve sensitivity:

- We don't expect many events: cutand-count methods would require atto-barnes of data (1000 years)
- Instead, final discriminant is a neuralnetwork output distribution

 Advanced/sophisticated techniques are used to improve sensitivity:

 Mature analysis using many sophisticated techniques with two goals:

increase acceptance

improve discriminant (due to increase in bkg from 1)

→Lots of neural networks, some boosted decision trees... to exact the most information out of the events

 Mature analysis using many sophisticated techniques with two goals:

increase acceptance

 improve discriminant (due to increase in bkg from 1)

►Lots of neural networks, some boosted decision trees... to exact the most information out of the events

 Here, I will focus on the triggers and electron ID

Tracking within a solenoid (1.4
 T): <u>Silicon</u> system surrounded by the <u>COT</u> (wire chamber)

- Tracking within a solenoid (1.4
 T): <u>Silicon</u> system surrounded by the <u>COT</u> (wire chamber)
- Calorimetry: <u>EM</u> sampling calorimeter followed by <u>Hadronic</u> sampling calorimeter
 - EM calorimeters have "shower maximum" detectors for shape and position information

- Tracking within a solenoid (1.4
 T): <u>Silicon</u> system surrounded by the <u>COT</u> (wire chamber)
- Calorimetry: <u>EM</u> sampling calorimeter followed by <u>Hadronic</u> sampling calorimeter
 - EM calorimeters have "shower maximum" detectors for shape and position information
- Muon chambers are the outermost detectors

What do electrons look like at CDF? (central, |n|<1.1)

What do electrons look like at CDF? (central, |n|<1.1)

- Track in Silicon system, Track in COT
 - Silicon hits, # of COT hits, Track χ^2 fit, p_T, track isolation

- Track in Silicon system, Track in COT
 - Silicon hits, # of COT hits, Track χ^2 fit, p_T, track isolation
- Most of the energy deposited in the EM calorimeter. Shower shape information from "shower max" detector

- Track in Silicon system, Track in COT
 - Silicon hits, # of COT hits, Track χ^2 fit, p_T, track isolation
- Most of the energy deposited in the EM calorimeter. Shower shape information from "shower max" detector
- Comparatively low energy deposited in Hadronic Calorimeter
 - L_{shr}, Em. Energy, Had. Energy, Had./ Em, E/P, isolation ratio, total (R=0.4) cal. isolation

- Track in Silicon system, Track in COT
 - Silicon hits, # of COT hits, Track χ^2 fit, p_T, track isolation
- Most of the energy deposited in the EM calorimeter. Shower shape information from "shower max" detector
- Comparatively low energy deposited in Hadronic Calorimeter
 - L_{shr}, Em. Energy, Had. Energy, Had./ Em, E/P, isolation ratio, total (R=0.4) cal. isolation
- Quiet muon chambers

- Track in Silicon system, Track in COT
 - Silicon hits, # of COT hits, Track χ^2 fit, p_T, track isolation
- Most of the energy deposited in the EM calorimeter. Shower shape information from "shower max" detector
- Comparatively low energy deposited in Hadronic Calorimeter
 - L_{shr}, Em. Energy, Had. Energy, Had./ Em, E/P, isolation ratio, total (R=0.4) cal. isolation
- Quiet muon chambers
- Signal=electrons Background = mostly jets, possibly taus or photons (fake electrons)

- Some/few hits in Silicon system and COT
 - Silicon hits, # of COT hits, Track χ^2 fit, p_T, track isolation

- Some/few hits in Silicon system and COT
 - Silicon hits, # of COT hits, Track χ^2 fit, p_T, track isolation
- Most of the energy deposited in the EM calorimeter (PEM). Shower shape information from "shower max" detector (PES)

- Some/few hits in Silicon system and COT
 - Silicon hits, # of COT hits, Track χ^2 fit, p_T, track isolation
- Most of the energy deposited in the EM calorimeter (PEM). Shower shape information from "shower max" detector (PES)
- Low energy deposited in Had. Cal.
 - Em. Energy, Had. Energy, Had./Em, E/P, isolation
 - PES PEM ΔR, PES 5x9 U (V), PES energy, PEM 3x3 χ^2 , PPR Energy

- Some/few hits in Silicon system and COT
 - Silicon hits, # of COT hits, Track χ^2 fit, p_T, track isolation
- Most of the energy deposited in the EM calorimeter (PEM). Shower shape information from "shower max" detector (PES)
- Low energy deposited in Had. Cal.
 - Em. Energy, Had. Energy, Had./Em, E/P, isolation
 - PES PEM ΔR, PES 5x9 U (V), PES energy, PEM 3x3 χ^2 , PPR Energy
- Quiet muon chambers

- Some/few hits in Silicon system and COT
 - Silicon hits, # of COT hits, Track χ^2 fit, p_T, track isolation
- Most of the energy deposited in the EM calorimeter (PEM). Shower shape information from "shower max" detector (PES)
- Low energy deposited in Had. Cal.
 - Em. Energy, Had. Energy, Had./Em, E/P, isolation
 - PES PEM Δ R, PES 5x9 U (V), PES energy, PEM 3x3 χ^2 , PPR Energy
- Quiet muon chambers

• Ideas?

- Ideas?
- Include additional data trigger streams
 - Naturally leads to more data

- Ideas?
- Include additional data trigger streams
 - Naturally leads to more data
 - Likely leads to more signal, but we must model the trigger performance well
- Improve electron ID efficiency!
 - More efficient electron or Z ID leads to more signal:

- Ideas?
- Include additional data trigger streams
 - Naturally leads to more data

- Improve electron ID efficiency!
 - More efficient electron or Z ID leads to more signal:
 - Limit electron background (misidentified electrons -- "fakes")

• Tevatron produces collisions at a rate upward of 1.7 MHz

 Tevatron produces collisions at a rate upward of 1.7 MHz

 However, computing capacity only allowed us to store events at a rate of ~100 Hz

 Tevatron produces collisions at a rate upward of 1.7 MHz

 However, computing capacity only allowed us to store events at a rate of ~100 Hz

- Solution: Triggers!
 - A trigger applies a set of requirements on data events in an attempt to save only interesting events (example:)

This analysis considered events saved due to their electron-like qualities

 Tevatron produces collisions at a rate upward of 1.7 MHz

 However, computing capacity only allowed us to store events at a rate of ~100 Hz

- Solution: Triggers!
 - A trigger applies a set of requirements on data events in an attempt to save only interesting events (example:)

Trigger Name	Level 1	Level 2	Level 3
Z NOTRACK	$E_T \geq 18 \; \mathrm{Gev}$ Central Had/Em ≤ 0.125 Plug Had/Em ≤ 0.0625 two objects	cluster $ \eta < 3.6$ cluster $E_T \ge 16$ Gev cluster Had/Em ≤ 0.125 two clusters	two objects $E_T \ge 18 \text{ GeV}$

This analysis considered events saved due to their electron-like qualities

• When you use Monte Carlo (MC) in a model of triggered data, you need to be aware of trigger behaviors

- When you use Monte Carlo (MC) in a model of triggered data, you need to be aware of trigger behaviors
- For instance, a trigger that turns on (fires) at energy X might in reality have a turn on like:

 When you use Monte Carlo (MC) in a model of triggered data, you need to be aware of trigger behaviors

• For instance, a trigger that turns on (fires) at energy X might in reality have a

 When you use Monte Carlo (MC) in a model of triggered data, you need to be aware of trigger behaviors

• For instance, a trigger that turns on (fires) at energy X might in reality have a

turn on like:

There are two ways to account for this:

 When you use Monte Carlo (MC) in a model of triggered data, you need to be aware of trigger behaviors

For instance, a trigger that turns on (fires) at energy X might in reality have a

- There are two ways to account for this:
 - Have event requirement E > Y (where the trigger is fully efficient)
 - This hurts acceptance

 When you use Monte Carlo (MC) in a model of triggered data, you need to be aware of trigger behaviors

For instance, a trigger that turns on (fires) at energy X might in reality have a

- There are two ways to account for this:
 - Have event requirement E > Y (where the trigger is fully efficient)
 - This hurts acceptance

 When you use Monte Carlo (MC) in a model of triggered data, you need to be aware of trigger behaviors

For instance, a trigger that turns on (fires) at energy X might in reality have a

- There are two ways to account for this:
 - Have event requirement E > Y (where the trigger is fully efficient)
 - This hurts acceptance
 - Attempt to model the turn-on behavior
 - apply a weight to MC events corresponding probability it would fire any of our triggers

- Previous analysis considered two triggers:
 - Single electron candidate with track and largely EM energy deposited in **central** calorimeter (E_T ≥ 18 GeV)
 - <u>Two calorimeter deposits</u> of at least 18 GeV largely EM in central or forward regions

- Previous analysis considered two triggers:
 - Single electron candidate with track and largely EM energy deposited in **central** calorimeter (E_T ≥ 18 GeV)
 - Two calorimeter deposits of at least 18 GeV largely EM in central or forward regions
- A Higgs-motivated trigger was implemented in data taking L_{int} ≥ 2.45/fb
 - Two cal. deposits largely EM central or forward, E_{T1,2}>18, 9 GeV and $M_{ee} > 40 \text{ GeV/c}^2$

- Previous analysis considered two triggers:
 - Single electron candidate with track and largely EM energy deposited in **central** calorimeter (E_T ≥ 18 GeV)
 - <u>Two calorimeter deposits</u> of at least 18 GeV largely EM in central or forward regions
- A Higgs-motivated trigger was implemented in data taking L_{int} ≥ 2.45/fb
 - Two cal. deposits largely EM central or forward, E_{T1,2}>18, 9 GeV and $M_{ee} > 40 \text{ GeV/c}^2$
- We needed to be able to model the "OR" probability of the combined three triggers

- Previous analysis considered two triggers:
 - Single electron candidate with track and largely EM energy deposited in **central** calorimeter (E_T ≥ 18 GeV)
 - Two calorimeter deposits of at least 18 GeV largely EM in central or forward regions
- A Higgs-motivated trigger was implemented in data taking L_{int} ≥ 2.45/fb
 - Two cal. deposits largely EM central or forward, E_{T1,2}>18, 9 GeV and $M_{ee} > 40 \text{ GeV/c}^2$
- We needed to be able to model the "OR" probability of the combined three triggers
 - Proposed solution: model its efficiency with a neural network

- We want to parameterize how likely a given Z event is to fire one of our triggers
- We need unbiased sample of Z events containing

- We want to parameterize how likely a given Z event is to fire one of our triggers
- We need unbiased sample of Z events containing
 - one subset of events that fired at least one of our triggers

Trigger Model

- We want to parameterize how likely a given Z event is to fire one of our triggers
- We need unbiased sample of Z events containing
 - one subset of events that fired at least one of our triggers
 - another subset that did not fire any of our triggers

Trigger Model

- We want to parameterize how likely a given Z event is to fire one of our triggers
- We need unbiased sample of Z events containing
 - one subset of events that fired at least one of our triggers
 - another subset that did not fire any of our triggers
- For this, we used an independent data stream (saved for its MET characteristics)
 - Trained using variables: $\Delta R(e_1,e_2)$, Mee, electron energies, track p⊤s, η_{det}s, L_{shr}, and Had/Ems

Trigger Model

- We want to parameterize how likely a given Z event is to fire one of our triggers
- We need unbiased sample of Z events containing
 - one subset of events that fired at least one of our triggers
 - another subset that did not fire any of our triggers
- For this, we used an independent data stream (saved for its MET characteristics)
 - Trained using variables: $\Delta R(e_1,e_2)$, Mee, electron energies, track p⊤s, η_{det}s, L_{shr}, and Had/Ems
- From network, determine weight, w:

Trigger Model Check

Trigger Model Check

- Consistency check in data, for instance P_T of the second electron
 - denominator = Z events in MET triggered stream
 - o = Z events in MET triggered stream that fired one of the 3 electron triggers
 - -- = Z events in MET stream with regression trigger weight applied

Electron 2 $\mathbf{p}_{_{\!\!\mathsf{T}}}$ Data and Pseudosimulation

Trigger Model Check

- Consistency check in data, for instance P_T of the second electron
 - denominator = Z events in MET triggered stream
 - o = Z events in MET triggered stream that fired one of the 3 electron triggers
 - -- = Z events in MET stream with regression trigger weight applied
- We can divide these & get an efficiency, ε
 - denominator is all Z events in MET triggered stream
 - ε follows the expected behavior

Electron 2 p_ Efficiency

Trigger Model Check: Monte Carlo

- Applying the trigger model improved modeling
 - Plots are of the sub-leading electron E_T in events with two forward electrons

Trigger Model Check: Monte Carlo

- Applying the trigger model improved modeling
 - Plots are of the sub-leading electron E_T in events with two forward electrons

Trigger Model Check: Monte Carlo

- Applying the trigger model improved modeling
 - Plots are of the sub-leading electron E_T in events with two forward electrons

Changing Gears: On to Electron ID!

Goal is to train a neural network to separate real electrons from fake electrons with a higher efficiency than has been done in the past

 Previous analysis used a cutbased electron selection

- Previous analysis used a cutbased electron selection
- Developed a <u>single-electron ID</u>

CDF Tracking Volume

- Previous analysis used a cutbased electron selection
- Developed a <u>single-electron ID</u>
- Different kinds/quality of electrons motivated 3 different networks:

CDF Tracking Volume

- Previous analysis used a cutbased electron selection
- Developed a <u>single-electron ID</u>
- Different kinds/quality of electrons motivated 3 different networks:
 - central (|η|<1.1)

- Previous analysis used a cutbased electron selection
- Developed a <u>single-electron ID</u>
- Different kinds/quality of electrons motivated 3 different networks:
 - central (|η|<1.1)
 - forward with Si-based track (phoenix) ($|\eta| > 1.1$)

CDF Tracking Volume

- Previous analysis used a cutbased electron selection
- Developed a <u>single-electron ID</u>
- Different kinds/quality of electrons motivated 3 different networks:
 - central (|η|<1.1)
 - forward with Si-based track (phoenix) ($|\eta| > 1.1$)
 - forward without Si-based track $(1.2 < |\eta| < 2.8)$

CDF Tracking Volume

- First, define trigger-inspired pre-selection cuts
 - so that we only train to find electrons realistically saved in data

- First, define trigger-inspired pre-selection cuts
 - so that we only train to find electrons realistically saved in data

Category	η	EmEt (GeV)	Had/Em	Additional
Central	$ \eta < 1.1$	> 9	< 0.125	
Forward Phoenix	$ \eta > 1.1$	> 9	< 0.0625	
Forward Non-Phoenix	$1.2 < \eta < 2.8$	> 9	< 0.125	Momentum Defined

- First, define trigger-inspired pre-selection cuts
 - so that we only train to find electrons realistically saved in data

Category	η	EmEt (GeV)	Had/Em	Additional
Central	$ \eta < 1.1$	> 9	< 0.125	
Forward Phoenix	$ \eta > 1.1$	> 9	< 0.0625	
Forward Non-Phoenix	$1.2 < \eta < 2.8$	> 9	< 0.125	Momentum Defined

• Additionally, the track z_0 must be well contained in the detector ($|z_0|$ <60cm)

- First, define trigger-inspired pre-selection cuts
 - so that we only train to find electrons realistically saved in data

Category	η	EmEt (GeV)	Had/Em	Additional
Central	$ \eta < 1.1$	> 9	< 0.125	
Forward Phoenix	$ \eta > 1.1$	> 9	< 0.0625	
Forward Non-Phoenix	$1.2 < \eta < 2.8$	> 9	< 0.125	Momentum Defined

• Additionally, the track z_0 must be well contained in the detector ($|z_0|$ <60cm)

- Then, consider signal and background templates (mc, data?)
- What variables to use?

• Considered templates:

Considered variables:

- Considered templates:
 - Signal:
 - 1) generator-level e's in Z+lf MC,
 - 2) data probe leg(tag-and-probe $76 <= m_{ee} <= 106$)

Considered variables:

- Considered templates:
 - Signal:
 - 1) generator-level e's in Z+lf MC,
 - 2) data probe leg(tag-and-probe $76 <= m_{ee} <= 106$)
 - Background:
 - 1) hegp-matched non-electrons in Z+lf MC and W+jets MC,
 - 2) data electrons candidates outside of Z window,
 - 3) data electron candidates in jettriggered data with exactly one candidate (Z veto) and MET<15 GeV (W veto)

Considered variables:

- Considered templates:
 - Signal:
 - 1) generator-level e's in Z+lf MC,
 - 2) data probe leg(tag-and-probe $76 <= m_{ee} <= 106$
 - Background:
 - 1) hegp-matched non-electrons in Z+lf MC and W+jets MC,
 - 2) data electrons candidates outside of Z window,
 - 3) data electron candidates in jettriggered data with exactly one candidate (Z veto) and MET<15 GeV (W veto)

- Considered variables:
 - Used an iterative method to select the most powerful variables out of a pool (later slide)
 - Had a pool of variables including energy-type values (p_T, energy, etc.)
 - Another pool without -- only qualitytype variables (Had/Em, track χ², E/ P, etc.)

- Considered templates:
 - Signal:
 - 1) generator-level e's in Z+lf MC,
 - 2) data probe leg(tag-and-probe $76 <= m_{ee} <= 106$
 - Background:
 - 1) hegp-matched non-electrons in Z+lf MC and W+jets MC,
 - 2) data electrons candidates outside of Z window,
 - 3) data electron candidates in jettriggered data with exactly one candidate (Z veto) and MET<15 GeV (W veto)

- Considered variables:
 - Used an iterative method to select the most powerful variables out of a pool (later slide)
 - Had a pool of variables including energy-type values (p_T, energy, etc.)
 - Another pool without -- only qualitytype variables (Had/Em, track χ², E/ P, etc.)

 Compared networks to cut-based selections & evaluated based on cleanness and improvement in acceptance

- Considered templates:
 - Signal:

ΑII

) generator-level e's in Z+lf MC,

- 2) data probe leg(tag-and-probe $76 <= m_{ee} <= 106$
- Background:
 - 1) hegp-matched non-electrons in Z+If MC and W+jets MC,
- data electrons candidates outside of Z window,
- Forward

data electron candidates in jettriggered data with exactly one candidate (Z veto) and MET<15 GeV (W veto)

- Considered variables:
 - Used an iterative method to select the most powerful variables out of a pool (later slide)
 - Had a pool of variables including energy-type values (p_T, energy, etc.)
 - Another pool without -- only qualitytype variables (Had/Em, track χ², E/ P, etc.)

 Compared networks to cut-based selections & evaluated based on cleanness and improvement in acceptance

 Variables were selected using an iterative approach. Given a pool of N variables

- Variables were selected using an iterative approach. Given a pool of N variables
 - Remove poorly modeled variables

$$\sigma = \frac{1}{2} \sum_{i}^{events} (target_i - score_i)^2$$

- Variables were selected using an iterative approach. Given a pool of N variables
 - Remove poorly modeled variables
 - N, 1-variables networks are created and evaluated. The most powerful (smallest testing error) variable is retained
 - N-1 2-variable networks are created and evaluated using the var. from step 1 + one from the pool

- Variables were selected using an iterative approach. Given a pool of N variables
 - Remove poorly modeled variables
 - N, 1-variables networks are created and evaluated. The most powerful (smallest testing error) variable is retained
 - N-1 2-variable networks are created and evaluated using the var. from step 1 + one from the pool

- Variables were selected using an iterative approach. Given a pool of N variables
 - Remove poorly modeled variables
 - N, 1-variables networks are created and evaluated. The most powerful (smallest testing error) variable is retained
 - N-1 2-variable networks are created and evaluated using the var. from step 1 + one from the pool

 - This continues until the testing error is no longer reduced

$$\sigma = \frac{1}{2} \sum_{i}^{events} (target_i - score_i)^2$$

Variables Selected

Central:

- Track P_T
- •Isolation Ratio
- •Had./Em.
- Track Isolation
- •Total Cal. Isolation (R=.4)
- •E/P
- Energy
- Silicon Hits

Plug Phoenix

- •Isolation Ratio
- •Pes Pem ∆R
- •Had./Fm.
- •Pes 2d 5×9 U
- Silicon Hits
- •Had. Isol. (R=.4)
- Track P_T
- •Pes 2d 5×9 V

- •Pes 2d Energy
- •Pem 3×3 ChiSq.
- •Em. E⊤
- Plug Preradiator
- Energy
- •Had. E⊤

Plug Non-Phoenix

- •Em. E⊤
- •Pem 3×3 Chisq
- •Pes 2d 5×9 U
- Energy
- Pes 2d Energy
- Track Isolation
- •Pes 2d 5by9 V
- •Total Cal. Isolation (R=.4)

- A Z object is formed by
 - One electron with a score greater than a **High** value
 - Plus another electron with a score greater than a Low score value

- A Z object is formed by
 - One electron with a score greater than a High value
 - Plus another electron with a score greater than a Low score value
- Score values were selected by evaluating the Z mass distribution in a subset of MC & data & looking at the change from the old selection
- Looked for improvement in Z w/o increasing "fakes"

- A Z object is formed by
 - One electron with a score greater than a High value
 - Plus another electron with a score greater than a Low score value
- Score values were selected by evaluating the Z mass distribution in a subset of MC & data & looking at the change from the old selection
- Looked for improvement in Z w/o increasing "fakes"
- Central pairs have an opposite charge req.
- $76 \le M_{ee} \le 106 \text{ GeV/c}^2$

What exactly are we adding?

- What exactly are we adding?
- As an example, traditional cutbased selection has isolation and Had./EM requirements of
 - Isol/E_T ≤ 0.1
 - Had/EM ≤ 0.06

- What exactly are we adding?
- As an example, traditional cutbased selection has isolation and Had./EM requirements of
 - Isol/E_T ≤ 0.1
 - Had/EM ≤ 0.06
- The network selection allows for

- What exactly are we adding?
- As an example, traditional cutbased selection has isolation and Had./EM requirements of
 - Isol/E_T ≤ 0.1
 - Had/EM ≤ 0.06
- The network selection allows for

- What exactly are we adding?
- As an example, traditional cutbased selection has isolation and Had./EM requirements of
 - Isol/E_T ≤ 0.1
 - Had/EM ≤ 0.06
- The network selection allows for
- Are these terrible?

- This is great! It's like 0.6/fb more data, or having the Tevatron run for ~3 more months
- Technicalities resulting in losses:
 - An over-aggressive requirement on "crack-track" Z's led to a reduction in acceptance (1-2%)

- This is great! It's like 0.6/fb more data, or having the Tevatron run for ~3 more months
- Technicalities resulting in losses:
 - An over-aggressive requirement on "crack-track" Z's led to a reduction in acceptance (1-2%)
 - A loose forward cut-based selection was considered, but ultimately omitted (~1%)

- This is great! It's like 0.6/fb more data, or having the Tevatron run for ~3 more months
- Technicalities resulting in losses:
 - An over-aggressive requirement on "crack-track" Z's led to a reduction in acceptance (1-2%)
 - A loose forward cut-based selection was considered, but ultimately omitted (~1%)
- Overall, <u>cleaner selection</u> (segue to next slide)!

• To find the rate at which a jet will mimic the electron signature, we

- To find the rate at which a jet will mimic the electron signature, we
 - Run over jet-triggered data samples (20, 50, 70, 100)

- To find the rate at which a jet will mimic the electron signature, we
 - Run over jet-triggered data samples (20, 50, 70, 100)
 - Apply a W & Z veto on events (MET<15 and only one possible electron)

- To find the rate at which a jet will mimic the electron signature, we
 - Run over jet-triggered data samples (20, 50, 70, 100)
 - Apply a W & Z veto on events (MET<15 and only one possible electron)
 - Throw out the lead p_T jet in an attempt to remove trigger bias

- To find the rate at which a jet will mimic the electron signature, we
 - Run over jet-triggered data samples (20, 50, 70, 100)
 - Apply a W & Z veto on events (MET<15 and only one possible electron)
 - Throw out the lead p_T jet in an attempt to remove trigger bias
 - remaining jets enter as denominator objects

- To find the rate at which a jet will mimic the electron signature, we
 - Run over jet-triggered data samples (20, 50, 70, 100)
 - Apply a W & Z veto on events (MET<15 and only one possible electron)
 - Throw out the lead p_T jet in an attempt to remove trigger bias
 - remaining jets enter as denominator objects
 - if a denominator jet has an electron passing selection within a cone of 0.4, it enters as a numerator object

- To find the rate at which a jet will mimic the electron signature, we
 - Run over jet-triggered data samples (20, 50, 70, 100)
 - Apply a W & Z veto on events (MET<15 and only one possible electron)
 - Throw out the lead p_T jet in an attempt to remove trigger bias
 - remaining jets enter as denominator objects
 - if a denominator jet has an electron passing selection within a cone of 0.4, it enters as a numerator object
 - this ratio is found in bins of E_T for each jet-triggered sample. The average is used and a 50% uncertainty is applied to cover the difference in rates

- To find the rate at which a jet will mimic the electron signature, we
 - Run over jet-triggered data samples (20, 50, 70, 100)
 - Apply a W & Z veto on events (MET<15 and only one possible electron)
 - Throw out the lead p_T jet in an attempt to remove trigger bias
 - remaining jets enter as denominator objects
 - if a denominator jet has an electron passing selection within a cone of 0.4, it enters as a numerator object
 - this ratio is found in bins of E_T for each jet-triggered sample. The average is used and a 50% uncertainty is applied to cover the difference in rates

This analysis was combined with the ZH to μμbb analysis

- This analysis was combined with the ZH to µµbb analysis
 - Limit plot: 95% CL upper limits on the Higgs boson production cross section as a function of the Higgs boson mass, divided by the expected SM Higgs boson cross section (σ_{ZH(IIbb)}/σ_{SM(ZHIIbb)}); values <1 are considered excluded

- This analysis was combined with the ZH to μμbb analysis
 - Limit plot: 95% CL upper limits on the Higgs boson production cross section as a function
 of the Higgs boson mass, divided by the expected SM Higgs boson cross section
 (σ_{ZH(IIbb)}/σ_{SM(ZHIIbb)}); values <1 are considered excluded

Many improvements in both analyses led to a ~20% improvement (m_H=120 GeV/c²)

in sensitivity due to technique alone

CDF II Preliminary: Expected Sensitivity Comparison

 One of the main contributors at low mass

- One of the main contributors at low mass
- Improvement here greatly helps the Tevatron result

- One of the main contributors at low mass
- Improvement here greatly helps the Tevatron result

- Measurement here is also important in the case of observance
 - H to bb allows for a m_H measurement at the Tevatron

- Measurement here is also important in the case of **observance**
 - H to bb allows for a m_H measurement at the Tevatron
- LHC is beginning to see very interesting results

- Measurement here is also important in the case of <u>observance</u>
 - H to bb allows for a m_H measurement at the Tevatron
- LHC is beginning to see very interesting results

If they see something, we should likely

see something soon as well!

Outlook

- TeV plan of Moriond with ~10/fb
- Exciting improvements in b tagging + new data
- LHC is seeing exciting hints in the data -- Tev provides a complementary approach
 - In any case, the world will ask what we see 115≤m_H≤140 GeV/c²
 - With the full dataset, our expected sensitivity at m_H=125 GeV/c² is 2.6 sigma exclusion
- Very interesting 2012!

Back-up Slides

Variable Definitions

- Track P_T: Transverse momentum of track
- Isolation Ratio: Total isolation over EmE_T
- Had/Em: Hadronic energy of cluster over electromagnetic energy of cluster
- Track Isolation: Sum the P_T of tracks (R<=0.4 and ΔZ <5 cm) minus the seed track P_T (nonratio).
- Total Cal. Isolation (R=0.4): Isolation in both EM and Had calorimeters (not a ratio).
- E/P: Ratio of transverse energy to transverse momentum
- Energy: Energy of the electron 4-vector
- Silicon Hits: Total number of silicon hits associated with the track
- PesPem ΔR : $\sqrt{(\eta_{Pem} \eta_{Pes})^2 + (\varphi_{Pem} \varphi_{Pes})^2}$

- Pes 2d 5x9 U(V): Energy in central 5 strips of the PES over the energy of the cluster's 9 strips in the U (or V) plane
- Had Isol (R=0.4): Excess hadronic transverse energy in a cone of 0.4 of the center of the cluster (non-ratio)
- Pes 2d Energy: Energy cluster deposited in the U layer
- Pem 3x3 χ^2 : "A quantitative assessment of the pattern of EM energy deposition for a given cluster, relative to testbeam." (cdf5975)
- Em E_T: Transverse energy of cluster in the electromagnetic calorimeter
- Plug Preradiator Energy: Energy deposited in towers associated with the cluster in the first scintillating layer of the PEM
- Had E_T: Transverse energy of cluster in hadronic calorimeter

CDF and Tevatron Combinations

CDF and Tevatron Combinations

Efficiencies

Tag-and-probe efficiencies: (probe leg passes trigger preselection)

	High Score	Low Score
Central ϵ_{data}	0.942 ± 0.004	0.978 ± 0.004
Central ϵ_{MC}	0.940 ± 0.002	0.978 ± 0.002
Scale Factor	1.002 ± 0.005	1.000 ± 0.005
Forward Phoenix ϵ_{data}	0.891 ± 0.004	0.956 ± 0.005
Forward Phoenix ϵ_{MC}	0.917 ± 0.003	0.973 ± 0.003
Scale Factor	0.972 ± 0.006	0.983 ± 0.006
Forward Non-Phoenix ϵ_{data}	0.540 ± 0.005	0.658 ± 0.005
Forward Non-Phoenix ϵ_{MC}	0.812 ± 0.004	0.890 ± 0.005
Scale Factor	0.664 ± 0.007	0.739 ± 0.007

Table 4.13: The alternate method of finding efficiencies. These are currently not applied in the analysis, but are meant to serve as a scale for the identification efficiency.

ZH event Z efficiency:

- -67.5% (for events generated ZH to eebb)
- -74.7% (subset w/ two electron candidates clustered in ntuple)
- -96.4% (subset w/ two candidates that pass trigger preselection)

Biggest loss here was due to:

- ▶ forward $|\eta|$ or
- Phoenix requirements
- ▶ Had/Em
- ▶track z₀

Why Trigger Score is a Probability

Error =
$$\frac{1}{2} \sum_{i}^{\#Fired} (f(x_i) - 1)^2 + \frac{1}{2} \sum_{j}^{\#NotFired} (f(x_j) - 0)^2$$

 $\frac{\partial \text{Error}}{\partial f(x)} = 0 = \sum_{i}^{\#Fired} (f(x_i) - 1) + \sum_{j}^{\#NotFired} f(x_j)$
 $0 = -(\#Fired) + \sum_{i}^{\#Fired} f(x_i) + \sum_{j}^{\#NotFired} f(x_j)$
 $(\#Fired) = \sum_{i}^{\#Fired} f(x_i) + \sum_{j}^{\#NotFired} f(x_j)$

Now, if the error on f(x) is minimized perfectly, we can evaluate this relation at a particular x value and the relation holds:

$$#F(x_0) = \sum_{i}^{\#F(x_0)} f(x_0) + \sum_{j}^{\#N(x_0)} f(x_0)$$

$$#F(x_0) = \sum_{k}^{\#All(x_0)} f(x_0)$$

$$#F(x_0) = (\#F(x_0) + \#N(x_0)) \times f(x_0); \quad f(x_0) \equiv \epsilon(x_0)$$

$$\frac{\#F(x_0)}{\#F(x_0) + \#N(x_0)} = \epsilon(x_0)$$

Standard CDF Efficiencies:

```
    Efficiencies and Scale Factor combining all the data (> 700 /pb)

                                                     Data Efficiency = 0.799 +- 0.002

    MC Efficiency = 0.814 +- 0.001

                                                     • Scale Factor = 0.981 + 0.003 (stat.) + 0.004 (syst.)
 Central Tight:

    Efficiencies and Scale Factor without Isolation cut combining all the data (> 700 /pb)

                                                     Data Efficiency = 0.823 +- 0.002

    MC Efficiency = 0.831 +- 0.001

                                                     • Scale Factor = 0.990 + 0.003(stat) + 0.003(syst)

    Efficiencies and Scale Factor combining all the data (> 700 /pb)

    Data Efficiency = 0.923 +- 0.001

Central Loose:

    MC Efficiency = 0.926 +- 0.001

                                                     • Scale Factor = 0.996 + 0.002(stat) + 0.004(syst)

    Efficiencies and Scale Factor combining all the data (> 700 /pb):

                                                     Data Efficiency = 0.837 +- 0.003
Forward (1.2 \leq |\eta| \leq 2.8):

    MC Efficiency = 0.897 +- 0.001

                                                     • Scale Factor = 0.933 + 0.005(stat) + 0.012(syst)

    Efficiencies and Scale Factor combining all the data (> 700 /pb):

    Data Efficiency = 0.658 +- 0.004

Forward Tight Phoenix:

    MC Efficiency = 0.691 +- 0.001

                                                      • Scale Factor = 0.952 +- 0.006(stat) +- 0.012(syst)

    Efficiencies and Scale Factor combining all the data (> 700 /pb):

                                                      Data Efficiency = 0.730 +- 0.004
Forward Tight Phoenix |\eta|<2:
```

MC Efficiency = 0.775 +- 0.001

• Scale Factor = 0.942 + 0.005(stat) + 0.012(syst)

B-Tagging Efficiencies

What's Going on Here:

 Precision electroweak measurements predict the Higgs mass by determining radiative corrections which are sensitive to m_H

• m_t , m_W , m_Z , Γ_W , hadronic vacuum polarization ($\Delta \alpha_{had}^{(5)}$), and Z pole data (asymmetry factors, ratio of widths,...) go into the fit

Trigger Requirements

Trigger Name	Level 1	Level 2	Level 3
ELECTRON CENTRAL 18	$E_T \geq 8 \text{ Gev}$ $\text{Had/Em} < 0.125$ $\text{Track } P_T \geq 8.34$	cluster $ \eta < 1.317$ cluster $E_T \ge 18 \text{ GeV}$ cluster $\text{Had/Em} \le 0.125$	$E_T \ge 18 \; \mathrm{GeV}$ $\mathrm{Had/Em} \le 0.125$ $\mathrm{central} \; \mathrm{calorimeter}$ $\mathrm{Track} \; P_T \ge 9 \; \mathrm{GeV}$ $\mathrm{Lshr} < 0.4$ $\Delta Z < 8 \; \mathrm{cm}$
Z NOTRACK	$E_T \ge 18 \text{ Gev}$ Central Had/Em ≤ 0.125 Plug Had/Em ≤ 0.0625 two objects	$\begin{array}{c} \text{cluster } \eta < 3.6 \\ \text{cluster } E_T \geq 16 \text{ Gev} \\ \text{cluster Had/Em} \leq 0.125 \\ \text{two clusters} \end{array}$	two objects $E_T \geq 18 \text{ GeV}$
Z NOTRACK MASS	$E_T \ge 18 \text{ Gev}$ Central Had/Em ≤ 0.125 Plug Had/Em ≤ 0.0625 two objects	$E_{T1} \ge 16 \text{ GeV} \ E_{T2} \ge 8 \text{ GeV} \ \text{Had/Em} \le 0.125 \ \text{Mass}(e_1, e_2) \ge 40 \text{ GeV/c}^2$	$E_{T1} \ge 18 \text{ GeV}$ $E_{T2} \ge 9 \text{ GeV}$ $\text{Had/Em} \le 0.125$

Table 4.1: Many of the requirements for the three electron triggers to pass each trigger level. An event passing level 3 is saved to mass storage and considered in this analysis. The "no track" label in a trigger name does not require a trackless object, but rather only takes into account calorimeter quantities in the trigger decision.

Modeling Events Due to Misidentified Electrons

- All electron plus jet pairs are considered as events with a weight equal to the fake rate of the jet
 - This should already have "double fake" events where the electron is really a fake
 - The neural network selection reduces the fake rate (8% to 1.6% of events at pretag)

Jet Selection

- Require two jets for H to bb
- $|\eta_{det}|$ < 2 and $E_T(jet_1, jet_2)$ > 25, 15 GeV
 - **Pretag**: this is the high-statistics (25 x events) model validation region
 - b tag: b quarks live long enough to hadronize producing a displaced vertex --finding this is b tagging
- Apply b tagging to the pretag sample
 - 3 final analysis channels:
 - Double tight tagged
 - Double loose tagged
 - Single tight tagged

 Processes that mimic the 2 electron + 2 jet signature

• Z + 2 jet

• Misidentified objects (electrons \bar{q} = fakes, b jets = mistags)

ttbar

diboson (ZZ, WZ, some WW + jets)

- Pretag is dominated by light flavor (If) jets
 - ttbar
 - Diboson
 - Z+hf jets
 - Z+If jets
 - **Fakes**

- Pretag is dominated by light flavor (If) jets
 - ttbar
 - Diboson
 - Z+hf jets
 - Z+If jets
 - **Fakes**

Model

- To test the hypotheses, we of course need a model
- Monte Carlo (MC) and datadriven methods are used
 - Data-driven methods better describe mistakes
 - Misidentified electrons (fakes)
 - Misidentified b jets (mistags)

Process	Generator	σ
Z+l.f.	Alpgen+Pythia	4.66 fb to 2111 pb
$Z+c\bar{c}$	ALPGEN+PYTHIA	148.4 to 1512 fb
$Z+bar{b}$	ALPGEN+PYTHIA	53.9 to 715.4 fb
WW	Рутніа	11.34 pb
WZ	Рутніа	3.47 pb
ZZ	Рутніа	3.62 pb
$-t\overline{t}$	Рутніа	7.04 pb

$M_H (\mathrm{GeV/c^2})$	$\sigma(\mathrm{fb})$	$BR(H \to b\bar{b})$
100	169.8	0.8033
105	145.9	0.7857
110	125.7	0.7590
115	103.9	0.7195
120	90.2	0.6649
125	78.5	0.5948
130	68.5	0.5118
135	60.0	0.4215
140	52.7	0.3304
145	46.3	0.2445
150	40.8	0.1671
•		

Model Validation: Acceptance Tables

High-statistics modelvalidation region:

PreTag Event Yields $ZH \rightarrow e^+e^-b\bar{b} \text{ Analysis}$			
CDF Run II Prelim	CDF Run II Preliminary (7.5 fb ⁻¹)		
Data	21122		
t 	126 ± 17		
Diboson	397 ± 34		
$Z/\gamma^* \rightarrow ee + h.f.$	1786 ± 561		
$Z/\gamma^* \rightarrow ee + l.f.$	18783 ± 4229		
Fakes	354 ± 177		
Model	21446 ± 4300		

Final Analysis Channels:

Tag Level Event Yields $ZH \rightarrow e^+e^-b\bar{b}$ Analysis CDF Run II Preliminary (7.5 fb ⁻¹)			
Single Tight Tag Loose Double Tag Double Tight Tag			Double Tight Tag
Data	693	87	51
$\overline{ZH_{120}}$	2.0 ± 0.2	0.8 ± 0.1	0.9 ± 0.1
tt	42 ± 6	17 ± 2	16 ± 3
Diboson	27 ± 3	5.7 ± 0.7	4.3 ± 0.6
$Z/\gamma^* \rightarrow ee + h.f.$	254 ± 81	43 ± 14	27 ± 10
Mistags	333 ± 47	20 ± 5	2.2 ± 0.6
Fakes	25 ± 12	0.4 ± 0.2	0.2 ± 0.1
Model	681 ± 120	86 ± 20	50 ± 13

Model Validation: Plots (Pretag)

• The final discriminant is a neural-network output

- The final discriminant is a neural-network output
- To improve discrimination, the output is separated into three regions:

- The final discriminant is a neural-network output
- To improve discrimination, the output is separated into three regions:

• The final discriminant is a neural-network output

 To improve discrimination, the output is separated into three regions:

- Training used tag-level MC (no signs of over-training)
- Variables used were selected in earlier analyses (iterative approach) and BDT outputs were added
- Network applied is the same for the three regions and for each tag category, BUT a different network is trained for each mass hypothesis

Final Discriminant: Input Variables

 Network variables taken from those selected by previous analyses.

```
Energy BDT
                               \Delta R(j_2,Z)
Shape BDT
                               •M<sub>ii</sub>
\cdot \Delta R(e_1,e_2)
                               •MET
•Twist e<sub>1</sub>e<sub>2</sub>
                         •Z.Et() + jj.Et()
Sphericity
                               •jj.Pt()
\cdot \Delta \Phi(bb)
                               •Z PT
\cdot \cos(\theta^*)
                                •MET proj. All Jets
```

Final Discriminant: Input Variables

- Network variables taken from those selected by previous analyses.
- We had a large number of well-modeled distributions to distinguish S & B

```
Energy BDT
                                   \cdot \Delta R(j_2, Z)
Shape BDT
                                   •M<sub>ii</sub>
\cdot \Delta R(e_1, e_2)
                                   •MET
•Twist e<sub>1</sub>e<sub>2</sub>
                                   •Z.Et() + jj.Et()
Sphericity
                                   •ii.Pt()
                                   ·Z PT
\cdot \Delta \Phi(bb)
\cdot \cos(\theta^*)
                                   •MET proj. All Jets
```

Shape BDT	Energy BDT
$\Delta R(e_1,e_2)$	Dijet Mass
$\not\! E_T$ proj. onto vector $\Sigma(jets)$	$ ot\!$
$\Delta R(j1,j2)$	$\cancel{E}_T/\sqrt{(j_1E_T+j_2E_T)}$
$\Delta R(Z, DijetObject)$	$\cancel{E}_T/\sqrt(\Sigma)$ jet E_T)
Aplanarity	sigExtraEt= ZE_T +Dijet E_T
Sphericity	Dijet P_T
$\Delta\eta(j_1,j_2)$	$Mass(e_1,j_1)$
Twist(e_1, e_2)	$Mass(e_2,j_2)$
Twist (j_1, j_2)	ZP_{T}
$\Delta \phi(j1,j2)$	Mass(Z,jj)
$\Delta\theta(\cancel{E}_T,j_1)$ in Z rest frame	Number of jets
$\Delta\theta(\cancel{E}_T,j_2)$ in Z rest frame	J ₁ E _T
$\Delta\theta(\cancel{E}_T,e_1)$ in H rest frame	J_2E_T
$\Delta\theta(\cancel{E}_T,e_2)$ in H rest frame	$\not\!E_T$ + el. E_T 's + jet E_T 's
$\not\!E_T$ projection onto jet 1	$\not E_T$ + lepton E_T 's
	$\Delta E_T(j_1,j_2)$ e_1E_T
21 ₁ j ₁ n	e_1L_T e_2E_T
j ₂ n	6261
$\Delta R(j_1, Z)$	
$\Delta R(j_2, Z)$	
$\cos(\theta^*)$	
$\cos(\chi \xi=\pi/2)$	
$cos(\theta jet_1)$ in Z rest Frame	
$cos(\theta jet_2)$ in Z rest Frame	
$cos(\theta e_1)$ in H rest Frame	
$cos(\theta e_2)$ in H rest Frame	

Distributions input to the BDT's. $Twist(x_1, x_2) =$ $\tan^{-1}(\Delta\phi(x_1,x_2)/\Delta\eta(x_1,x_2))$ [?]. θ is the angle between an object and the proton beam direction. θ^* is the angle between the Z boson candidate and the proton beam direction in the zero momentum frame. The sum of the angles χ and ξ is equal to the angle between the Higgs candidate and the lead P_T lepton in the Z boson rest frame.

Final Discriminant: Input Variables

- Network variables taken from those selected by previous analyses.
- We had a large number of well-modeled distributions to distinguish S & B
 - Network performance drops after a few variables are added
 - Instead, developed BDTs (bagged)

·Energy BDT	• ∆ R(j ₂ ,Z)
Shape BDT	•M _{jj}
• ∆ R(e ₁ ,e ₂)	•MET
•Twist e ₁ e ₂	•Z.Et() + jj.Et()
Sphericity	•jj.Pt()
. Δφ(bb)	•Z P _T
• $\cos(\theta^*)$	MET proj. All Jets

Shape BDT	Energy BDT
$\Delta R(e_1,e_2)$	Dijet Mass
$\not E_T$ proj. onto vector $\Sigma(jets)$	$_{_}$ $ ot\!$
$\Delta R(j1,j2)$	$\not E_T/\sqrt(j_1E_T+j_2E_T)$
$\Delta R(Z, DijetObject)$	$\cancel{E}_T/\sqrt(\Sigma)$ jet E_T)
Aplanarity	sigExtraEt= ZE_T +Dijet E_T
Sphericity	Dijet $P_{\mathcal{T}}$
$\Delta\eta(j_1,j_2)$	$Mass(e_1,j_1)$
Twist(e_1, e_2)	$Mass(e_2,j_2)$
Twist (j_1, j_2)	ZP_{T}
$\Delta\phi(j1,j2)$	Mass(Z,jj)
$\Delta\theta(\cancel{E}_T,j_1)$ in Z rest frame	Number of jets
$\Delta\theta(\cancel{E}_T,j_2)$ in Z rest frame	$J_1 E_T$
$\Delta\theta(\cancel{E}_T,e_1)$ in H rest frame	J_2E_T
$\Delta\theta(\cancel{E}_T,e_2)$ in H rest frame	$\not E_T$ + el. E_T 's + jet E_T 's
$\not\!\!E_T$ projection onto jet 1	$\not\!E_T$ + lepton E_T 's
$\not\!E_T$ projection onto jet 2	$\Delta E_T(j_1, j_2)$
Zη	$e_1 E_T$
j _, 1η	e_2E_T
j ₂ η	
$\Delta R(j_1, Z)$	
$\Delta R(j_2, Z)$	
$\cos(\theta^*)$	
$cos(\chi \xi=\pi/2)$ $cos(\theta jet_1)$ in Z rest Frame	
$cos(\theta jet_1)$ in Z rest Frame	
$cos(\theta e_1)$ in H rest Frame	
$cos(\theta e_2)$ in H rest Frame	

Distributions input to the BDT's. $Twist(x_1, x_2) =$ $\tan^{-1}(\Delta\phi(x_1,x_2)/\Delta\eta(x_1,x_2))$ [?]. θ is the angle between an object and the proton beam direction. θ^* is the angle between the Z boson candidate and the proton beam direction in the zero momentum frame. The sum of the angles χ and ξ is equal to the angle between the Higgs candidate and the lead P_T lepton in the Z boson rest frame.

Final Discriminant Outputs (m_H=120 GeV/c²)

Final Discriminant Outputs (m_H=120 GeV/c²)

No Higgs excess -- so we proceed to set upper production cross section times branching ratio limits

Electron ID Neural Network: Powerful Variables

 The Poisson probability of n given events occurring (µ is average) is:

$$p(n,\mu) = \frac{e^{-\mu}\mu^n}{n!}$$

- The Poisson probability of n given events occurring (µ is average) is:
- Extending to N_b bins and N_C channels and replacing μ with R × s + b (s & b are expected signal and background; R is a multiplicative factor reflecting the sensitivity to signal)

$$p(n,\mu) = \frac{e^{-\mu}\mu^n}{n!}$$

$$\prod_{i=1}^{N_C} \prod_{j=1}^{N_b} \frac{e^{-(R \times s_{ij} + b_{ij})} (R \times s_{ij} + b_{ij})^{n_{ij}}}{n_{ij}!}$$

 The Poisson probability of n given events occurring (µ is average) is:

- $p(n,\mu) = \frac{e^{-\mu}\mu^n}{n!}$
- Extending to N_b bins and N_C channels and replacing μ with R \times s + b (s & b are expected signal and background; R is a multiplicative factor reflecting the sensitivity to signal)
- $\prod_{i=1}^{N_C} \prod_{j=1}^{N_b} \frac{e^{-(R \times s_{ij} + b_{ij})} (R \times s_{ij} + b_{ij})^{n_{ij}}}{n_{ii}!}$
- Introduce systematic uncertainties with $\pi(\theta)$, where θ_k is the k-th $\mathcal{L}(R, \vec{s}, \vec{b} | \vec{n}, \vec{\theta}) \times \pi(\vec{\theta}) = \prod_{i=1}^{N_C} \prod_{i=1}^{N_b} \frac{\mu_{ij}^{''ij} e^{-\mu_{ij}}}{n_{ii}!} \times \prod_{k=1}^{n_{np}} e^{-\theta_k^2/2}$ nuisance parameter

 The Poisson probability of n given events occurring (µ is average) is:

- $p(n,\mu) = \frac{e^{-\mu}\mu^n}{n!}$
- Extending to N_b bins and N_C channels and replacing μ with R \times s + b (s & b are expected signal and background; R is a multiplicative factor reflecting the sensitivity to signal)
- $\prod_{i=1}^{N_C} \prod_{j=1}^{N_b} \frac{e^{-(R \times s_{ij} + b_{ij})} (R \times s_{ij} + b_{ij})^{n_{ij}}}{n_{ii}!}$

- Introduce systematic uncertainties nuisance parameter
 - with $\pi(\theta)$, where θ_k is the k-th $\mathcal{L}(R, \vec{s}, \vec{b} | \vec{n}, \vec{\theta}) \times \pi(\vec{\theta}) = \prod_{i=1}^{N_C} \prod_{i=1}^{N_b} \frac{\mu_{ij}^{"ij} e^{-\mu_{ij}}}{n_{ii}!} \times \prod_{k=1}^{n_{np}} e^{-\theta_k^2/2}$
- Integrate over the parameter space leaving a function in R, P(R)

$$P(R) = \int \mathcal{L}(R, \vec{s}, \vec{b} | \vec{n}, \vec{\theta}) \times \pi(\vec{\theta}) d\vec{\theta}$$

- The Poisson probability of n given events occurring (µ is average) is:
- Extending to N_b bins and N_C channels and replacing μ with R × s + b (s & b are expected signal and background; R is a multiplicative factor reflecting the sensitivity to signal)
- $\prod_{i=1}^{N_C} \prod_{j=1}^{N_b} \frac{e^{-(R \times s_{ij} + b_{ij})} (R \times s_{ij} + b_{ij})^{n_{ij}}}{n_{ii}!}$

 $p(n,\mu) = \frac{e^{-\mu}\mu^n}{n!}$

- Introduce systematic uncertainties with $\pi(\theta)$, where θ_k is the k-th $\mathcal{L}(R, \vec{s}, \vec{b} | \vec{n}, \vec{\theta}) \times \pi(\vec{\theta}) = \prod_{i=1}^{N_C} \prod_{i=1}^{N_b} \frac{\mu_{ij}^{''ij} e^{-\mu_{ij}}}{n_{ii}!} \times \prod_{k=1}^{n_{np}} e^{-\theta_k^2/2}$ nuisance parameter
- Integrate over the parameter space leaving a function in R, P(R)

 Integrate over P(R) to find 95% coverage (95% confidence level)

- The Poisson probability of n given events occurring (µ is average) is:
- Extending to N_b bins and N_C channels and replacing μ with R × s + b (s & b are expected signal and background; R is a multiplicative factor reflecting the sensitivity to signal)
- Introduce systematic uncertainties nuisance parameter
- Integrate over the parameter space leaving a function in R, P(R)

 Integrate over P(R) to find 95% coverage (95% confidence level)

$$p(n,\mu) = \frac{e^{-\mu}\mu^n}{n!}$$

$$\prod_{i=1}^{N_C} \prod_{j=1}^{N_b} \frac{e^{-(R\times s_{ij}+b_{ij})}(R\times s_{ij}+b_{ij})^{n_{ij}}}{n_{ij}!}$$

with $\pi(\theta)$, where θ_k is the k-th $\mathcal{L}(R, \vec{s}, \vec{b} | \vec{n}, \vec{\theta}) \times \pi(\vec{\theta}) = \prod_{i=1}^{N_C} \prod_{i=1}^{N_b} \frac{\mu_{ij}^{''ij} e^{-\mu_{ij}}}{n_{ii}!} \times \prod_{k=1}^{n_{np}} e^{-\theta_k^2/2}$

Luminosity uncertainty: 3.8% (uncertainty in inelastic cross section), 4.4% due in acceptance & efficiency of luminosity monitor)

- Luminosity uncertainty: 3.8% (uncertainty in inelastic cross section), 4.4% due in acceptance & efficiency of luminosity monitor)
- Trigger model: 1% (effect measured using different subsets of data to train and test the network)

- Luminosity uncertainty: 3.8% (uncertainty in inelastic cross section), 4.4% due in acceptance & efficiency of luminosity monitor)
- Trigger model: 1% (effect measured using different subsets of data to train and test the network)
- cross-section uncertainty: 6% (ZZ, WZ, WW), 40% (Z+heavy flavor), 10% (ttbar)

- Luminosity uncertainty: 3.8% (uncertainty in inelastic cross section), 4.4% due in acceptance & efficiency of luminosity monitor)
- Trigger model: 1% (effect measured using different subsets of data to train and test the network)
- cross-section uncertainty: 6% (ZZ, WZ, WW), 40% (Z+heavy flavor), 10% (ttbar)
- Misidentified electrons: 50% (assessed by checking the rates in different jet data sets)

- Luminosity uncertainty: 3.8% (uncertainty in inelastic cross section), 4.4% due in acceptance & efficiency of luminosity monitor)
- Trigger model: 1% (effect measured using different subsets of data to train and test the network)
- cross-section uncertainty: 6% (ZZ, WZ, WW), 40% (Z+heavy flavor), 10% (ttbar)
- Misidentified electrons: 50% (assessed by checking the rates in different jet data sets)

 b-tag scale factor: 5.2% (single) tight tag), 8.7% (double loose tag), 10.4% (double tight tag)

- Luminosity uncertainty: 3.8% (uncertainty in inelastic cross section), 4.4% due in acceptance & efficiency of luminosity monitor)
- Trigger model: 1% (effect measured using different subsets of data to train and test the network)
- cross-section uncertainty: 6% (ZZ, WZ, WW), 40% (Z+heavy flavor), 10% (ttbar)
- Misidentified electrons: 50% (assessed by checking the rates in different jet data sets)

- b-tag scale factor: 5.2% (single) tight tag), 8.7% (double loose tag), 10.4% (double tight tag)
- EM energy scale: 3% (acceptance effects of period corrections and plug-energy smearing)

- Luminosity uncertainty: 3.8% (uncertainty in inelastic cross section), 4.4% due in acceptance & efficiency of luminosity monitor)
- Trigger model: 1% (effect measured using different subsets of data to train and test the network)
- cross-section uncertainty: 6% (ZZ, WZ, WW), 40% (Z+heavy flavor), 10% (ttbar)
- Misidentified electrons: 50% (assessed by checking the rates in different jet data sets)

- b-tag scale factor: 5.2% (single) tight tag), 8.7% (double loose tag), 10.4% (double tight tag)
- EM energy scale: 3% (acceptance effects of period corrections and plug-energy smearing)
- lepton ID scale factor: 2%

- Luminosity uncertainty: 3.8% (uncertainty in inelastic cross section), 4.4% due in acceptance & efficiency of luminosity monitor)
- Trigger model: 1% (effect measured using different subsets of data to train and test the network)
- cross-section uncertainty: 6% (ZZ, WZ, WW), 40% (Z+heavy flavor), 10% (ttbar)
- Misidentified electrons: 50% (assessed by checking the rates in different jet data sets)

- b-tag scale factor: 5.2% (single tight tag), 8.7% (double loose tag), 10.4% (double tight tag)
- EM energy scale: 3% (acceptance effects of period corrections and plug-energy smearing)
- lepton ID scale factor: 2%
- ISR/FSR: 4% (effect measured in MC)

- Luminosity uncertainty: 3.8% (uncertainty in inelastic cross section), 4.4% due in acceptance & efficiency of luminosity monitor)
- Trigger model: 1% (effect measured using different subsets of data to train and test the network)
- cross-section uncertainty: 6% (ZZ, WZ, WW), 40% (Z+heavy flavor), 10% (ttbar)
- Misidentified electrons: 50% (assessed by checking the rates in different jet data sets)

- b-tag scale factor: 5.2% (single tight tag), 8.7% (double loose tag), 10.4% (double tight tag)
- EM energy scale: 3% (acceptance effects of period corrections and plug-energy smearing)
- lepton ID scale factor: 2%
- ISR/FSR: 4% (effect measured in MC)
- Jet-energy scale: shift the jetenergy corrections in MC ±σ

- Luminosity uncertainty: 3.8% (uncertainty in inelastic cross section), 4.4% due in acceptance & efficiency of luminosity monitor)
- Trigger model: 1% (effect measured using different subsets of data to train and test the network)
- cross-section uncertainty: 6% (ZZ, WZ, WW), 40% (Z+heavy flavor), 10% (ttbar)
- Misidentified electrons: 50% (assessed by checking the rates in different jet data sets)

- b-tag scale factor: 5.2% (single tight tag), 8.7% (double loose tag), 10.4% (double tight tag)
- EM energy scale: 3% (acceptance effects of period corrections and plug-energy smearing)
- lepton ID scale factor: 2%
- ISR/FSR: 4% (effect measured in MC)
- Jet-energy scale: shift the jetenergy corrections in MC ±σ
- Mistagged jets: run on data with parameters ±σ

- PE is drawn (from the MC), and integral set up
- The P(R) integral is integrated to the 95% value giving R₀
- (For the expected value) R₀ is entered into a distribution of Ro
- After PEs are done, 1 & 2 σ bands are found
- This is done at each mass point creating this kind of graph
- Observed is treated as separate PE

- PE is drawn (from the MC), and integral set up
- The P(R) integral is integrated to the 95% value giving R₀
- (For the expected value) R₀ is entered into a distribution of Ro
- After PEs are done, 1 & 2 σ bands are found
- This is done at each mass point creating this kind of graph
- Observed is treated as separate PE

- PE is drawn (from the MC), and integral set up
- The P(R) integral is integrated to the 95% value giving R₀
- (For the expected value) R₀ is entered into a distribution of Ro
- After PEs are done, 1 & 2 σ bands are found
- This is done at each mass point creating this kind of graph
- Observed is treated as separate PE

- PE is drawn (from the MC), and integral set up
- The P(R) integral is integrated to the 95% value giving R₀
- (For the expected value) R₀ is entered into a distribution of Ro
- After PEs are done, 1 & 2 σ bands are found
- This is done at each mass point creating this kind of graph
- Observed is treated as separate PE

- PE is drawn (from the MC), and integral set up
- The P(R) integral is integrated to the 95% value giving R₀
- (For the expected value) R₀ is entered into a distribution of Ro
- After PEs are done, 1 & 2 σ bands are found
- This is done at each mass point creating this kind of graph
- Observed is treated as separate PE

- PE is drawn (from the MC), and integral set up
- The P(R) integral is integrated to the 95% value giving R₀
- (For the expected value) R₀ is entered into a distribution of Ro
- After PEs are done, 1 & 2 σ bands are found
- This is done at each mass point creating this kind of graph
- Observed is treated as separate PE

Result: ZH to eebb

CDF Run II Preliminary (7.5 fb⁻¹)

 $ZH \rightarrow e^+e^-b\bar{b}$ Limits. CDF Run II Preliminary (7.5 fb⁻¹)

ZH	Observed	Expected Limit				
Mass	Limit	- 2 <i>σ</i>	-1 σ	Median	$+1\sigma$	+2 <i>σ</i>
100	2.74	1.94	2.67	3.75	5.41	7.71
105	2.97	2.17	2.99	4.26	6.17	8.73
110	3.74	2.46	3.36	4.80	6.86	9.68
115	3.91	3.00	4.13	5.79	8.28	11.69
120	4.29	3.51	4.77	6.85	9.75	13.83
125	4.79	4.25	5.76	8.12	11.75	16.30
130	5.44	5.24	7.14	10.14	14.52	20.45
135	6.84	6.68	9.15	12.84	18.18	25.76
140	10.66	9.02	12.25	17.10	24.68	34.53
145	15.16	13.22	18.10	25.42	36.49	51.31
150	25.05	21.59	28.95	40.78	58.39	80.87

Extras!

EM:

Central:
$$\frac{\sigma(E_T)}{E_T} = \frac{13.5\%}{\sqrt{E_T}} \oplus 2\%$$

Forward:
$$\frac{\sigma(E)}{E} = \frac{16\%}{\sqrt{E}} \oplus 1\%$$

Hadronic:

Central:
$$\frac{\sigma(E_T)}{E_T} = \frac{75\%}{\sqrt{E_T}} \oplus 3\%$$

Forward:
$$\frac{\sigma(E)}{E} = \frac{80\%}{\sqrt{E}} \oplus 5\%$$

PreTag Zs	Fired	Fired Excl.
Single e	74.6%	5.96%
2 Cal Deposits	84.8%	6.01%
New Trigger	69.0%	5.09%

Extras!

	High	Low
Central	0.75	0.3
Forward Phoenix	0.5	0
Forward Non-Phx	0.6	0.3

Score Range [-1,1]

EM:

Central: $\frac{\sigma(E_T)}{E_T} = \frac{13.5\%}{\sqrt{E_T}} \oplus 2\%$

Forward: $\frac{\sigma(E)}{E} = \frac{16\%}{\sqrt{E}} \oplus 1\%$

Hadronic:

Central: $\frac{\sigma(E_T)}{E_T} = \frac{75\%}{\sqrt{E_T}} \oplus 3\%$

Forward: $\frac{\sigma(E)}{E} = \frac{80\%}{\sqrt{F}} \oplus 5\%$

PreTag Zs	Fired	Fired Excl.
Single e	74.6%	5.96%
2 Cal Deposits	84.8%	6.01%
New Trigger	69.0%	5.09%

- A Z object is formed by
 - One electron with a score greater than a **High** value
 - Plus another electron with a score greater than a Low score value

- A Z object is formed by
 - One electron with a score greater than a **High** value
 - Plus another electron with a score greater than a Low score value

	High	Low
Central	0.75	0.3
Forward Phoenix	0.5	0
Forward Non-Phx	0.6	0.3

- A Z object is formed by
 - One electron with a score greater than a **High** value
 - Plus another electron with a score greater than a **Low** score value

Score selection:

While maximizing a significance value was pursued, it led to extreme cutvalues. Values selected by taking the best Z mass distribution in data (also check MC)

	High	Low
Central	0.75	0.3
Forward Phoenix	0.5	0
Forward Non-Phx	0.6	0.3

- A Z object is formed by
 - One electron with a score greater than a **High** value
 - Plus another electron with a score greater than a **Low** score value
- Reject Non-Phx + Non-Phx objects

Score selection:

While maximizing a significance value was pursued, it led to extreme cutvalues. Values selected by taking the best Z mass distribution in data (also check MC)

	High	Low
Central	0.75	0.3
Forward Phoenix	0.5	0
Forward Non-Phx	0.6	0.3

- A Z object is formed by
 - One electron with a score greater than a **High** value
 - Plus another electron with a score greater than a **Low** score value
- Reject Non-Phx + Non-Phx objects
- Additionally allow a high-score central electron to be paired with a crack-track electron
 - Crack-track electrons are cut-based (track) points to an uninstrumented part of the calorimeter)

Score selection:

While maximizing a significance value was pursued, it led to extreme cutvalues. Values selected by taking the best Z mass distribution in data (also check MC)

	High	Low
Central	0.75	0.3
Forward Phoenix	0.5	0
Forward Non-Phx	0.6	0.3

- A Z object is formed by
 - One electron with a score greater than a **High** value
 - Plus another electron with a score greater than a **Low** score value
- Reject Non-Phx + Non-Phx objects
- Additionally allow a high-score central electron to be paired with a crack-track electron
 - Crack-track electrons are cut-based (track) points to an uninstrumented part of the calorimeter)
- We have a mass cut of 76-106 GeV/c² and an opposite charge req. for central+central events

Score selection:

While maximizing a significance value was pursued, it led to extreme cutvalues. Values selected by taking the best Z mass distribution in data (also check MC)

	High	Low
Central	0.75	0.3
Forward Phoenix	0.5	0
Forward Non-Phx	0.6	0.3